CS 124 OO Design and Implementation

Second Semester, 2008-2009
Project Specs

JTA Section
Many modern retail stores incorporate customer loyalty programs into their point-of-sale systems, where customers earn points as they make their purchases, to be redeemed towards rewards or future purchases. The loyalty programs not only encourage repeat business, but provide an opportunity for store management to analyze customer preferences.
Design and implement an object-oriented system in Java that supports sales and inventory of items, as well as a customer loyalty program, for a generic store. The users of this system are: the manager, the cashier, the customer, and the system administrator. The manager handles inventory and pricing (restocks items as necessary, introduces new items into the system, maintains the prices of items), manages cash and the cashiers (monitors the store-wide cash position, maintains cashiers), and administers the loyalty program (enrollment of customers, generation of customer analysis reports). A cashier facilitates sales of items both by anonymous customers and customers with loyalty cards. A customer may inquire about the points earned and redeemed under the program. The system administrator sets up the store and facilitates the backup and restoration of store data.
Refer to the following milestones for due dates and associated deliverables. You may work in pairs, although distribution of work should be reported which will be used as a basis for grading. All submissions must be coursed through moodle.

Milestone 1 – Initial design:

(Due March 18)

Use case diagram and initial class diagram
Interaction diagrams for sales and inventory management use cases
Milestone 2 – Implementation version 1:

(Due March 23)

Sales and inventory management transactions with tester programs

Milestone 3 – Implementation version 2 with revised design:

(Due March 30)

Loyalty program and system admin functions incorporated
Updated class diagram and interaction diagrams for implemented use cases
Milestone 4 – Implementation version 3 with completed design documentation:

(Due April 7)

System with interactive user interfaces, transaction file import capability,

and persistence
Finalized UML diagrams: class diagrams, use case diagram,
interaction diagrams, state diagrams for main classes
System Requirements

What you will design and build must be consistent with the specifications indicated in this document. You may resolve any ambiguities or provide more detail as you wish. It would help if you indicate all these additional details in a separate sheet when you submit your design. Some minimum requirements follow:
1. Items must have an item code, an item name and an item category. Items must also have a unit retail price and a unit name. For example: the item named “EGG” might have the code “P101”, categorized under “PRODUCE”. If eggs cost 50.00 per dozen, then the unit price and name of the product are 50.00 and “DOZEN”, respectively.

2. When the system is set up, the store is given some initial store-wide cash balance.

3. Deliveries of products cause inventory of items to go up. Delivery transactions should be recorded which include the date of the delivery, the items bought, and how much they were bought for (wholesale price, which may vary per delivery even for the same item). Payments are taken from the store-wide cash balance.
4. There may be several cashiers in the store. A cashier begins the day with some starting cash (the starting amount is fixed across all cashiers) when it opens, to be taken from the store-wide cash balance. Cashiers facilitate sales transactions. Each transaction results in items bought at the indicated retail price for a customer, causing stock level to go down and cash at the cashier to go up. Many different items may be bought in a single transaction. At the end of the day, a cashier closes and all cash from the cashier is returned to the store-wide cash balance. Customers who transact with the cashier may be anonymous or may have a loyalty card. For Milestone 2, you just need to implement anonymous customers—transaction details need not be stored, in this case.

5. For customers with loyalty cards, you must store transaction details; i.e., the transaction date, the items bought by the customer, and at which prices. Note that the store manager may change the price, so the price for each item bought should (also) be stored at the level of the sales transaction.
6. For loyalty card customers, assign a customer id for each customer, and store the customer’s last name, first name, address, gender, and age. Points are awarded based on the total amount of a transaction, e.g., 1 point per 500 pesos (fractions of points are not rewarded). Each point corresponds to 1 peso that may be used towards a future purchase.
7. You should be able to generate a report containing all transactions made by a given customer. You should also be able to generate summary reports for analysis such as a list of all customers who bought a particular item.

8. For Milestones 2 and 3, tester Java programs that create the necessary objects and simulate transactions on these objects are sufficient. For Milestone 4, interactive user interfaces (e.g., JFrames) are expected through which you could demonstrate carrying out the different use cases. In addition, also for Milestone 4, you should provide for set up and for transactions to be coursed through text files, for simpler batch testing and demonstration.

9. For Milestone 4, you should incorporate persistence to the GUI program. This means that when you quit the program and start it over, the state of the store is preserved. This can be done automatically during start up or through a load and save option provided in the interface. Use JDBC and/or Hibernate.

10. Expect some minor changes in requirements—these will be posted in the website and/or announced in class, when they arise

