CS 112 Programming Languages and Paradigms

Project 2: The C++ Programming Language and Object-Oriented Programming

Due: October 4, midnight (Submit through moodle)

Operations on Square Matrices
Write C++ classes for square matrix objects. The classes should support addition and multiplication of matrices (use operator overloading). Assume that the entries in the matrix are ints. You will need to write several classes:

matrix: this is an abstract class that includes matrix dimension data and virtual methods; the next classes are derived classes of this class.

uppertrimatrix: represents an upper triangular matrix—entries below the diagonal are 0

lowertrimatrix: represents a lower triangular matrix—entries above the diagonal are 0

sparsematrix: a matrix such that the A[i,j] = 0 if | i – j | > 1; only diagonal entries and entries immediately next to diagonal entries may be non-zero.

diagmatrix: a matrix such that only diagonal entries may be non-zero

regularmatrix: a matrix whose entries may all be non-zero.

While the matrix class cannot be instantiated, all five derived classes should have constructors with two parameters: an integer specifying N, the size of the square matrix, and a character string that contain the entries in the matrix. Depending on the matrix type, entries that are definitely zero are not included in this string. In effect, there will be exactly N(N+1)/2 entries indicated for lower and upper triangular matrices, 3N-2 entries for sparse matrices, N entries for diagonal matrices, and N2 entries for regular matrices. The order of the entries will be from top row to bottom row, and within a row, from left to right. The following are examples of the different constructor calls and their corresponding matrices:

regularmatrix reg(3, “1 2 3 4 5 6 7 8 9”);

uppertrimatrix up(3, “1 2 3 4 5 6”);

lowertrimatrix low(3, “1 2 3 4 5 6”);

sparsematrix sp(3, “1 2 3 4 5 6 7”);

diagmatrix diag(3, “1 2 3”);

reg

up

low

sp

diag

1 2 3

1 2 3

1 0 0

1 2 0

1 0 0
4 5 6

0 4 5

2 3 0

3 4 5

0 2 0
7 8 9

0 0 6

4 5 6

0 6 7

0 0 3
A test program will be provided that carries out addition and multiplication operations on these matrices. Operations across matrix types are allowed. A print method should be available that displays the matrix in the expected way (similar in format to the ones shown above). Remember to implement destructors, copy constructors, and assignment operators properly as the test program will require these methods.

This assignment is also about storage efficiency. You are expected to use only the necessary amount of storage particularly for the non-regular matrices. Operations within and across matrix types should be mindful of the resulting matrix types (e.g., upper triangular + lower triangular = regular, sparse * sparse = sparse). The space-efficiency aspect of this program is worth 15 points of your score.
You should have a matrix.h class containing the class declarations and a matrix.cpp class containing method implementations. Submit a zip file containing these two files by midnight on October 4 through your moodle account. You may be required to present your program.
