CS 105 Project 1: The Corrupted Queue

For this project, you are to simulate what we shall call a corrupt office. Suppose there is an office that offers a particular service to its clients. To avail of this service, the client has to line up and wait for his/her turn. Once it is the client’s turn, he/she gets served and leaves the line. Now, this office serves two types of clients: regular clients and VIP clients.

As this is a corrupt office, if the office supervisor is present, then the clients line up accordingly. The client comes in and queues up at the end of the line and waits for his/her turn. The client at the front of the line is served first.

If the supervisor is not present, then two lines are made. The first line acts like a queue and is for regular clients while the second line acts like a stack and is for VIP clients. If a regular client comes in, then he/she will have to go to the queue and wait for his/her turn to be served. When a VIP client comes in, then he/she will have to go to the stack and wait for his/her turn (on a last-in first-out basis—late VIPs take precedence over earlier VIPs!). When a signal indicates it is time to serve a client, it prioritizes the stack. If there are VIP clients, then they are served first over the regular clients. It is only when the stack is empty will the regular clients be then served.

You are to write a class called the CorruptQueue. This class should contain two data structures, namely a RegularQueue and a VIPStack that will hold clients. CorruptQueue reads its data from a text file called officeinput.txt. This text file contains information on what CorruptQueue should do a line at a time. As CorruptQueue reads a line, it should process the information and printout a corresponding output on the command prompt. The text file contains a variation of these lines:

· lineup,<name>,<VIP/regular>

· serve

· arrive,supervisor

· leave,supervisor

arrive and leave indicate when the supervisor is in the office or not. CorruptQueue prints out “Supervisor present” or “Supervisor not here” if it reads the corresponding command. When a supervisor arrives and there the VIP stack has contents, pop them all off and enqueue them onto the regular queue, in the popped order. Once VIP client is in the regular queue, the client never transfers to the VIP stack, even when the supervisor leaves. Also, assume that at the beginning of the simulation, the supervisor is not in the office.
lineup means that a client has entered the office and is waiting to be served. If the supervisor is present, all clients, whether regular or VIP, line up at the queue. If the supervisor is not in the office, then it determines where a client lines up. If the client is a regular client, then this client lines up at the RegularQueue. If the client is a VIP client, then the client is pushed into the VIPStack. CorruptQueue prints out where this client lines up. Examples would be “Regular client Juan dela Cruz lines up at RegularQueue” or “VIP client John Smith lines up at VIPStack”.

serve signals that the counter is free and can accommodate one client. If the VIPStack contains clients, these clients are prioritized over the clients in the RegularQueue. CorruptQueue prints out the name of the client being served and which data structure the client came from. Examples are “Now serving Juan dela Cruz from RegularQueue” or “Now serving John Smith from VIPStack”.

Feel free to come up with your own classes or methods—just make sure that you have a class called CorruptQueue and a class called CQSimulation contains the main method (CQSimulation is the class we will execute when we test your program). Use linked list implementations for the stack and the queue and make sure you include factory classes. We will post sample input and output files for reference.
CorruptQueue

RegularQueue

VIPStack

