
What Is the Rational Unified Process?

by Philippe Kruchten
Rational Fellow
Rational Software Canada

What exactly is the Rational Unified Process, or RUP as many call it now? I
can give several answers to this question, from different perspectives:

● What is the purpose of the
RUP? It is a software
engineering process, aimed at
guiding software development
organizations in their
endeavors.

● How is the RUP designed
and delivered? It is a process
product, designed like any
software product, and
integrated with the Rational
suites of software development
tools.

● What is the structure of the
RUP; how is it organized
internally? The RUP has a very well-defined and regular structure,
using an object-oriented approach for its description.

● How would an organization proceed to adopt the RUP? The
RUP is a process framework that allows a software development
organization to tailor or extend the RUP to match its specific needs.

● What will I find in the RUP? It captures many of modern
software development's best practices harvested by Rational over
the years, in a form suitable for a wide range of projects and
organizations.

The RUP Is a Software Engineering Process

Many organizations have slowly become aware of just how important a
well-defined and well-documented software development process is to the
success of their software projects. The development of the CMM
(Capability Maturity Model) by the Software Engineering Institute (SEI)

jprince
http://www.therationaledge.com/content/jan_01/f_rup_pk.html

jprince
Copyright Rational Software 2001

has become a beacon, a standard to which many organizations look, when
they aim at attaining level 2, 3, or higher. Over the years, these
organizations have collected their knowledge and shared it with their
developers. This collective know-how often grows out of design methods,
published textbooks, training programs, and small how-to notes amassed
internally over several projects. Unfortunately, in practice, these internally
developed processes often end up gathering dust in nice binders on a
developer's shelf -- rarely updated, rapidly becoming obsolete, and almost
never followed. Other software development organizations have no
process at all, and need a starting point, an initial process to jump-start
them on the path of faster development of better quality software
products.

The RUP can help both kinds of organizations, by providing them with a
mature, rigorous, and flexible software engineering process.

The RUP Is a Process Product

The RUP is not just a book, a development method developed and
published once and for all in paper form. "Software processes are
software, too," wrote Lee Osterweil, Professor of Computer Science at the
University of Massachusetts. In contrast with the dusty binder approach,
the Rational Unified Process is designed, developed, delivered, and
maintained like any software tool. The Rational Unified Process shares
many characteristics with software products:

● Like a software product, the Rational Unified Process is designed
and documented using the Unified Modeling Language (UML). An
underlying object model, the Unified Software Process Model
(USPM) provides a very coherent backbone to the process.

● It is delivered online using Web technology, not in books or binders,
so it's literally at the developers' fingertips.

● Regular software upgrades are released by Rational Software
approximately twice a year. So the process is never obsolete, and
its users benefit from the latest development. All team members
access the same version of the process.

● Because it is modular and in electronic form, it can be tailored and
configured to suit the specific needs of a development organization,
something that's hard to do with a book or a binder.

● It is integrated with the many software development tools in the
Rational Suites, so developers can access process guidance within
the tool they are using.

Figure 1 shows a page from the RUP.

Figure 1: A Page from the RUP
(View full size graphic in new window)

The Architecture of the RUP

The process itself has been designed using techniques similar to those for
software design. In particular, it has an underlying object-oriented model,
using UML. Figure 2 shows the overall architecture of the Rational Unified
Process. The process has two structures or, if you prefer, two dimensions:

● The horizontal dimension represents time and shows the lifecycle
aspects of the process as it unfolds.

● The vertical dimension represents core process disciplines (or
workflows), which logically group software engineering activities by
their nature.

The first (horizontal) dimension represents the dynamic aspect of the
process expressed in terms of cycles, phases, iterations, and milestones.
In the RUP, a software product is designed and built in a succession of
incremental iterations. This allows testing and validation of design ideas,
as well as risk mitigation, to occur earlier in the lifecycle. The second
(vertical) dimension represents the static aspect of the process described
in terms of process components: activities, disciplines, artifacts, and roles.

Figure 2 - Two Dimensions of the RUP

The RUP Is a Process Framework

The Rational Unified Process is also a process framework that can be
adapted and extended to suit the needs of an adopting organization. It is
general and comprehensive enough to be used "as is," i.e., out-of-the-
box, by many small-to-medium software development organizations,
especially those that do not have a very strong process culture. But the
adopting organization can also modify, adjust, and expand the Rational
Unified Process to accommodate the specific needs, characteristics,
constraints, and history of its organization, culture, and domain. A process
should not be followed blindly, generating useless work and producing
artifacts that are of little added value. Instead, the process must be made
as lean as possible while still fulfilling its mission to help developers rapidly
produce predictably high-quality software. The best practices of the
adopting organization, along with its specific rules and procedures, should
complement the process.

The process elements that are likely to be modified, customized, added, or
suppressed include artifacts, activities, workers, and workflows as well as
guidelines and artifact templates. The Rational Unified Process itself
contains the roles, activities, artifacts, guidelines, and examples necessary
for its modification and configuration by the adopting organization.
Moreover, these activities are also supported by the Rational Process
Workbench™ (RPW) tool. This new tool uses a UML model of the Rational
Unified Process to support process design and authoring activities, and the
production of company-specific or project-specific RUP variants, called

development cases.

Starting in 2000, the RUP contains several variants, or pre-packaged
development cases for different types of software development
organizations.

The RUP Captures Software Development Best
Practices

The Rational Unified Process captures many of modern software
development's best practices in a form suitable for a wide range of
projects and organizations:

● Develop software iteratively.

● Manage requirements.

● Use component-based architectures.

● Visually model software.

● Continuously verify software quality.

● Control changes to software.

1. Develop Software Iteratively

Most software teams still use a waterfall process for development projects,
completing in strict sequence the phases of requirement analysis, design,
implementation/integration, and test. This inefficient approach idles key
team members for extended periods and defers testing until the end of the
project lifecycle, when problems tend to be tough and expensive to
resolve, and pose a serious threat to release deadlines. By contrast, RUP
represents an iterative approach that is superior for a number of reasons:

● It lets you take into account changing requirements. The truth is
that requirements usually change. Requirements change and
"requirements creep" -- the addition of requirements that are
unnecessary and/or not customer-driven as a project progresses --
have always been primary sources of project trouble, leading to late
delivery, missed schedules, dissatisfied customers, and frustrated
developers.

● Integration is not one "big bang" at the end; instead, elements are
integrated progressively -- almost continuously. With RUP, what
used to be a lengthy time of uncertainty and pain -- taking up to
40% of the total effort at the end of a project -- is broken down into
six to nine smaller integrations involving fewer elements.

● Risks are usually discovered or addressed during integration. With
the iterative approach, you can mitigate risks earlier. As you unroll
the early iterations, you test all process components, exercising
many aspects of the project, such as tools, off-the-shelf software,
people skills, and so on. You can quickly see whether perceived
risks prove to be real and also uncover new, unsuspected risks

when they are easier and less costly to address.

● Iterative development provides management with a means of
making tactical changes to the product -- to compete with existing
products, for example. It allows you to release a product early with
reduced functionality to counter a move by a competitor, or to
adopt another vendor for a given technology.

● Iteration facilitates reuse; it is easier to identify common parts as
they are partially designed or implemented than to recognize them
during planning. Design reviews in early iterations allow architects
to spot potential opportunities for reuse, and then develop and
mature common code for these opportunities in subsequent
iterations.

● When you can correct errors over several iterations, the result is a
more robust architecture. As the product moves beyond inception
into elaboration, flaws are detected even in early iterations rather
than during a massive testing phase at the end. Performance
bottlenecks are discovered at a time when they can still be
addressed, instead of creating panic on the eve of delivery.

● Developers can learn along the way, and their various abilities and
specialties are more fully employed during the entire lifecycle.
Testers start testing early, technical writers begin writing early, and
so on. In a non-iterative development, the same people would be
waiting around to begin their work, making plan after plan but not
making any concrete progress. What can a tester test when the
product consists of only three feet of design documentation on a
shelf? In addition, training needs, or the need for additional people,
are spotted early, during assessment reviews.

● The development process itself can be improved and refined along
the way. The assessment at the end of an iteration not only looks at
the status of the project from a product or schedule perspective,
but also analyzes what should be changed in the organization and in
the process to make it perform better in the next iteration.

Project managers often resist the iterative approach, seeing it as a kind of
endless and uncontrolled hacking. In the Rational Unified Process, the
iterative approach is very controlled; the number, duration, and objectives
of iterations are carefully planned, and the tasks and responsibilities of
participants are well defined. In addition, objective measures of progress
are captured. Some reworking takes place from one iteration to the next,
but this, too, is carefully controlled.

2. Manage Requirements

Requirements management is a systematic approach to eliciting,
organizing, communicating, and managing the changing requirements of a
software-intensive system or application.

The benefits of effective requirements management are numerous:

● Better control of complex projects. This includes greater

understanding of the intended system behavior as well as
prevention of requirements creep.

● Improved software quality and customer satisfaction. The
fundamental measure of quality is whether a system does what it is
supposed to do. With the Rational Unified Process, this can be more
easily assessed because all stakeholders have a common
understanding of what must be built and tested.

● Reduced project costs and delays. Fixing errors in requirements is
very expensive. With effective requirements management, you can
decrease these errors early in the development, thereby cutting
project costs and preventing delays.

● Improved team communication. Requirements management
facilitates the involvement of users early in the process, helping to
ensure that the application meets their needs. Well-managed
requirements build a common understanding of the project needs
and commitments among the stakeholders: users, customers,
management, designers, and testers.

It is often difficult to look at a traditional object-oriented system model
and tell how the system does what it is supposed to do. This difficulty
stems from the lack of a consistent, visible thread through the system
when it performs certain tasks. In the Rational Unified Process, use cases
provide that thread by defining the behavior performed by a system.

Use cases are not required in object orientation, nor are they a
compulsory vehicle in the Rational Unified Process. Where they are
appropriate, however, they provide an important link between system
requirements and other development artifacts, such as design and tests.
Other object-oriented methods provide use-case-like representation but
use different names for it, such as scenarios or threads.

The Rational Unified Process is a use-case-driven approach, which means
that the use cases defined for the system can serve as the foundation for
the rest of the development process. Use cases used for capturing
requirements play a major role in several of the process workflows,
especially design, test, user-interface design, and project management.
They are also critical to business modeling.

3. Use Component-Based Architecture

Use cases drive the Rational Unified Process throughout the entire
lifecycle, but design activities center on architecture -- either system
architecture or, for software-intensive systems, software architecture. The
main focus of early iterations is to produce and validate a software
architecture. In the initial development cycle, this takes the form of an
executable architectural prototype that gradually evolves, through
subsequent iterations, into the final system.

The Rational Unified Process provides a methodical, systematic way to
design, develop, and validate an architecture. It offers templates for
describing an architecture based on the concept of multiple architectural
views. It provides for the capture of architectural style, design rules, and

constraints. The design process component contains specific activities
aimed at identifying architectural constraints and architecturally significant
elements, as well as guidelines on how to make architectural choices. The
management process shows how planning the early iterations takes into
account the design of an architecture and the resolution of major technical
risks.

A component can be defined as a nontrivial piece of software: a module,
package, or subsystem that fulfills a clear function, has a clear boundary,
and can be integrated into a well-defined architecture. It is the physical
realization of an abstraction in your design. Component-based
development can proceed in several ways:

● In defining a modular architecture, you identify, isolate, design,
develop, and test well-formed components. These components can
be individually tested and gradually integrated to form the whole
system.

● Furthermore, some of these components can be developed to be
reusable, especially components that provide solutions to a wide
range of common problems. Reusable components are typically
larger than mere collections of utilities or class libraries. They form
the basis of reuse within an organization, increasing overall
software productivity and quality.

● More recently, the advent of commercially successful infrastructures
supporting the concept of software components -- such as Common
Object Request Broker Architecture (CORBA), the Internet, ActiveX,
and JavaBeans -- has launched a whole industry of off-the-shelf
components for various domains, allowing developers to buy and
integrate components rather than develop them in-house.

The first point above exploits the old concepts of modularity and
encapsulation, bringing the concepts underlying object-oriented
technology a step further. The final two points shift software development
from programming software (one line at a time) to composing software
(by assembling components).

The Rational Unified Process supports component-based development in
several ways.

● The iterative approach allows developers to progressively identify
components and decide which ones to develop, which ones to
reuse, and which ones to buy.

● The focus on software architecture allows you to articulate the
structure. The architecture enumerates the components and the
ways they integrate, as well as the fundamental mechanisms and
patterns by which they interact.

● Concepts such as packages, subsystems, and layers are used during
analysis and design to organize components and specify interfaces.

● Testing is organized around single components first and then is
gradually expanded to include larger sets of integrated components.

4. Visually Model Software

Models are simplifications of reality; they help us to understand and shape
both a problem and its solution, and to comprehend large, complex
systems that we could not otherwise understand as a whole. A large part
of the Rational Unified Process is about developing and maintaining models
of the system under development.

The Unified Modeling Language (UML) is a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system. It gives you a standard means of writing the
system's blueprints, covering conceptual items such as business processes
and system functions, as well as concrete items such as classes written in
a specific programming language, database schemas, and reusable
software components. While it provides the vocabulary to express various
models, the UML does not tell you how to develop software. That is why
Rational developed the Rational Unified Process, a guide to the effective
use of the UML for modeling. It describes the models you need, why you
need them, and how to construct them. RUP2000 uses UML version 1.4.

5. Continuously Verify Quality

Often people ask why there is no worker in charge of quality in the
Rational Unified Process. The answer is that quality is not added to a
product by a few people. Instead, quality is the responsibility of every
member of the development organization. In software development, our
concern about quality is focused on two areas: product quality and process
quality.

● Product quality -- The quality of the principal product being
produced (the software or system) and all the elements it
comprises (for example, components, subsystems, architecture,
and so on).

● Process quality -- The degree to which an acceptable process
(including measurements and criteria for quality) was implemented
and adhered to during the manufacturing of the product.

Additionally, process quality is concerned with the quality of the
artifacts (such as iteration plans, test plans, use-case realizations,
design model, and so on) produced in support of the principal
product.

6. Control Changes to Software

Particularly in an iterative development, many work products are often
modified. By allowing flexibility in the planning and execution of the
development and by allowing the requirements to evolve, iterative
development emphasizes the vital issues of keeping track of changes and
ensuring that everything and everyone is in sync. Focused closely on the
needs of the development organization, change management is a
systematic approach to managing changes in requirements, design, and
implementation. It also covers the important activities of keeping track of
defects, misunderstandings, and project commitments as well as

associating these activities with specific artifacts and releases. Change
management is tied to configuration management and measurements.

Who Is Using the Rational Unified Process?

More than a thousand companies were using the Rational Unified Process
at the end of 2000. They use it in various application domains, for both
large and small projects. This shows the versatility and wide applicability
of the Rational Unified Process. Here are examples of the various industry
sectors around the world that use it:

● Telecommunications

● Transportation, aerospace, defense

● Manufacturing

● Financial services

● Systems integrators

More than 50% of these users are either using the Rational Unified Process
for e-business or planning to do so in the near future. This is a sign of
change in our industry: as the time-to-market pressure increases, as well
as the demand for quality, companies are looking at learning from others'
experience, and are ready to adopt proven best practices. The way these
organizations use the Rational Unified Process also varies greatly: some
use it very formally; they have evolved their own company process from
the Rational Unified Process, which they follow with great care. Other
organizations have a more informal usage, taking the Rational Unified
Process as a repository of advice, templates, and guidance that they use
as they go along -- as a sort of "electronic coach" on software engineering.
By working with these customers, observing how they use the RUP,
listening to their feedback, looking at the additions they make to the
process to address specific concerns, the RUP development team at
Rational continues to refine the process for the benefit of all.

To Learn More

● Rational Unified Process 2000, Rational Software, Cupertino, CA
(2000) http://www.rational.com/rup/

● Philippe Kruchten, The Rational Unified Process -- An Introduction,
2nd ed., Addison-Wesley-Longman, Reading, MA (2000).

● Grady Booch et al., UML Users' Guide, Addison-Wesley-Longman,
Reading, MA (2000)

● Ivar Jacobson et al., The Unified Software Development Process,
Addison-Wesley-Longman, Reading, MA (1999).

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.

Thank you!

Copyright Rational Software 2001 | Privacy/Legal Information

