Developing an Intelligent Tutor for Debugging

Janssen Marwin L. Go
Department of Information Systems and Computer Science
Ateneo de Manila University, Loyola Heights,
Quezon City, Philippines
(632) 426-6001
jlgo172003@yahoo.com

Maria Clarisse T. Ligunas
Department of Information Systems and Computer Science
Ateneo de Manila University, Loyola Heights,
Quezon City, Philippines
(632) 426-6001
clarisse_ligunas@yahoo.com

Ma. Mercedes T. Rodrigo
Department of Information Systems and Computer Science
Ateneo de Manila University, Loyola Heights,
Quezon City, Philippines
(632) 426-6001
mrodrigo@ateneo.edu
ABSTRACT
Debugging or diagnosing errors in programs is an important programming skill. However, debugging is not easy to teach or to learn for novice programmers because it requires experience in programming to be good at debugging and novice programmers by definition are just starting out with programming. Using a study of the most frequently committed non-literal errors, which are the errors compilers give out that are not always helpful, and their real causes, we will create parts of an intelligent tutoring system that will allow the user to review the compile errors encountered and help determine what they really mean. We will also test how helpful this tutor will be to the students who will use it.

Keywords
BlueJ, novice programmer, Java, tutor, debugging, non-literal errors.

1. INTRODUCTION

Debugging is the process of identifying the error within the computer program and aptly correcting it. It is an essential programming skill, but unfortunately, it is difficult to learn especially for novice programmers. “Skill at debugging may be somewhat distinct from general programming ability, and as such deserves individual attention...” [8]

A study conducted to understand the difficulties of novice programmers [9] suggested that “from the viewpoint of an IDE developer, it may be necessary for error messages to be more descriptive and less ambiguous” because they observed that some students do not understand error messages and cannot get past misleading errors they receive. These misleading errors, errors that are not correctly identified by the compiler, known as non-literal errors were studied in novice programmers’ compile logs. They identified the most common non-literal errors encountered by students in an introductory programming class and determined the real causes for the errors that came up. [5]

As computer based-instructional systems have become predominant and have been found as an effective teaching tool [10], we will build an intelligent tutor that will help the student identify the real meaning of the errors he encounters using the information gathered in the study of detecting non-literal errors. [5]

We aim to develop an intelligent tutoring system that will teach novice programmers how to debug. To achieve this, we intend to create an interface that will help students correctly understand the meaning of the compilation errors and incorporate the findings of the study Detection of Non-literal Java Errors in an Introductory Programming Class as the knowledge base of the tutoring system.

The intelligent tutoring system will allow students to understand the errors in their programs better. As an effect, it will help them develop the skill of debugging, which is difficult for a student to learn as knowing how to write code does not mean that one can debug properly.

Debugging is “an important and complicated skill that requires repeated practice” and activities that can help a student learn it should be integrated by instructors into the curriculum. [3] The tutoring system that we will create will be embedded in BlueJ, an integrated development environment (IDE) so that students can have easy access to it while performing their programming exercises. This will help them continuously develop the skill of correctly identifying their errors and how to solve them as they go through their introductory programming class and hopefully, eventually learn how to debug better without the aid of the tutoring system.

2. LITERATURE REVIEW
2.1 Previous Work

Some students who have difficulty debugging can detect the problem but are unable to correct it. Others cannot even determine what the error is. [1] Researchers observing the programmers ambiguous or misleading error messages sometimes caused these difficulties.[9]

The study of [5] aimed to “devise methods of detecting non-literal errors.” The researchers used the compile logs of students enrolled under the CS21a Introduction to Computing I course for the school year 2007-2008 at the Ateneo de Manila University. The specific IDE used by the students was BlueJ. They were able to derive the top five errors according to the logs and the actual errors associated with each one.

Based on these errors, they were able to produce a working prototype for a processor that was added to the BlueJ IDE. When a student compiled his code, the processor detected non-literal errors and provided the student with different ways he could correct his code. This currently works with four out of the most commonly encountered errors by the novice programmers.

Our work aims to integrate this processor and build a tutor that can help novice programmers improve their debugging skills.
2.2 System Design
[image: image1.png]Server
Connection

7JEA

Blue]

Extension

Processor for
Non-Literal Errors

> Blue] Program

| —
—3

Figure 1. System Design

The BlueJ program in Figure 1 is any project that is by the user using BlueJ. Located inside this BlueJ program will be an extension which will serve as the intelligent tutor for debugging. Placed inside the tutor is the processor that was created from a study conducted on non-literal errors. This processor is able to translate java errors into something more specific, which a programmer can better understand.

The intelligent tutor will act as a listener for compilation errors. This means that whenever the user compiles the project, the tutor will watch out for compilation errors. If an error occurs, the extension will call the processor for non-literal errors and feed in the arguments needed for it to run. The output from the processor will be given as input to the Graphical User Interface (GUI). See Figure 4.1. Every interaction of the user with the GUI will be recorded via a network connection to a server. These logs will hopefully be used in the future so the further improvements can be made to the system.

2.3 Theoretical Framework
Intelligent tutoring systems by definition, are developed so that students will experience the same instructional advantages as if being taught by an expert human tutor [2].

ITS has several components: domain knowledge, student knowledge, tutoring knowledge and communication knowledge [10]. The intelligent tutor we will develop will incorporate domain knowledge and communication knowledge.

Domain knowledge “represents expert knowledge, or how experts perform in the domain.” [10] The results of the Detection of Non-Literal Java Errors in an Introductory Programming Class [5] will comprise the domain knowledge as it is the information base of the tutoring system. It will determine the non-literal error, the actual error and the other possible meaning of the errors.

Communication knowledge “represents methods for communicating between students and computers (graphical interfaces, animated agents, or dialogue mechanisms). It includes managing communication, discussing student reasoning, sketching graphics to illustrate a point, showing or detecting emotion, and explaining how conclusions were reached.” [9] The communication knowledge part of the intelligent tutor will be researched on as it will determine whether the tutor will be helpful or not. We will consult with the introductory programming class instructors and research on tutoring systems’ interface designs so that the graphical interface and the dialogues will be presented in a way so that the tutor can effectively communicate with the users.

Student knowledge “represents students’ mastery of the domain and describes how to reason about their knowledge. It contains both stereotypic student knowledge of the domain (typical student skills) and information about the current student.” Tutoring knowledge “represents teaching strategies, and includes methods for encoding reasoning about the feedback. It might be derived from empirical observation of teachers informed by learning theories, or enabled by technology thus only weakly related to a human analogue.” Student knowledge will not be incorporated as included as the tutor does not aim to store the progress of the student because there are no specific modules that require tracking of progress in the tutor. Tutoring knowledge will not be included as the tutor cannot give feedback as to the student’s as to the student’s performance but instead only give information on the specific errors he is committing.
2.4 Software Development
We incorporated the results of the research on non-literal errors in an introductory programming class [5] with an intelligent tutor.

First, we created the user interface, a BlueJ extension using the BlueJ Extensions Application programming interface (API). Inside the BlueJ extensions API, there is an interface that helps detect compilation errors. This was used to help detect when a compilation error occurs. Incorporated inside the tutor was the processor for non-literal errors. [5] This processor was able to determine the compile error output by BlueJ and if the output is a non-literal error, it gave a description of the actual error that occured. After determining the non-literal error, the tutor provided more information on the error to help programmers debug their code easier.

The information on each error was divided into three layers. The first layer gave the student general background regarding the error committed. If the student needed further information, he could opt to proceed to the second layer where a more detailed description was provided. In this layer, the student was given suggestions on to how to solve a particular error. The last layer contained sample code on how the user can address the error. The student was given a sample of a correctly constructed code as well as a sample of a wrong code in this layer. The correct code is there so that mistakes can be avoided especially in the syntax of their code. On the other hand, the wrong code was there to help the user determine whether their own code contains similar errors.
[image: image2.png]Dictuse'™ for multplcation operation

Bt

Figure 2. Error Description Layer One

[image: image3.png]~ Jinteligent Tu olE] =

[Tne symbol of multiplication is an asterisk "' You might have forgotten
to use an asterisk between two factors that you want to maltiply and written
it like you would in Math where you just put two £actors next to each other.

I besTo B e |

I Show Example. |

et

Figure 3. Error Description Layer Two

[image: image4.png]

Figure 4 Error Description Layer Three

The whole tutor was saved as a jar file along with the BlueJ jar file required for the extension. This was placed inside the extensions folder located inside the installation folder of BlueJ. On the other hand, the scripts on the actual error are saved as XML files and placed inside the BlueJ installation folder.
2.5 Pre-test

The tutor was pre-tested with CS21a Introduction to Computing students in the Ateneo de Manila University. They were given a lab exercise to complete. Every time an error message was given by the tutor, the tutor asked the students if the messages were accurate and the message was helpful.

Table 1. Results of the pre-test
	
	Accuracy

	
	Yes
	No

	Cannot find symbol errors
	132
	48

	Incompatible types errors
	
	1

	brace expected errors
	2
	

	Parentheses expected
	3
	

	Semicolon expected errors
	16
	1

	TOTAL
	153
	50

	
	Helpfulness

	
	Yes
	No

	Cannot find symbol errors
	126
	6

	Incompatible types errors
	
	

	brace expected errors
	2
	

	Parentheses expected
	3
	

	Semicolon expected errors
	14
	2

	TOTAL
	145
	8

The results of our pre-testing showed that 153 out of 183 (83%) times that the tutor detected the error gave accurate error messages. And 145 out of the 153 (94%) accurate messages were helpful in showing the students the errors they have encountered in their program.

3. Next Steps
Further, the intelligent tutor will be used by students taking their introductory programming class in the Technological Institute of the Philippines. We will compare the average error quotient (EQ), time of completion and number of compilation trials of the students who used the intelligent tutor and those who did not. “The error quotient characterizes how much or how little a student struggles with syntax errors while programming.” A perfect EQ is 0.0 which means that a student did not commit any specific syntax error at least twice in a row. A session with a 1.0 EQ, on the other hand, means that all compilations had a syntax error and these errors encountered were committed at least twice in a row. [6] Because the tutor is supposed to help them correctly detect their error before they edit their code and compile it again, we expect the EQ of the system users will be lower.

We will ask the faculty to evaluate the effectiveness of the system in helping teach the students how to debug correctly and the students to evaluate the effectiveness of the system in helping them learn to identify their errors more accurately and correct them appropriately.

4. ACKNOWLEDGMENTS
The authors would like to thank Mr. Jose Alfredo De Vera, Mr. Thomas Dy, Ma. Beatriz Espejo-Lahoz and the staff of Ateneo De Manila’s Department of Information Systems and Computer Science for all the help they gave in this work. We would also like to thank the students of Ateneo De Manila who took CS21A in their first semester in the school year 2010-2011 and their professors for their assistance.

5. REFERENCES

[1] Ahmadzadeh, M., Elliman, D., and Higgins, C. An Analysis of Patterns of Debugging Among Novice Computer Science Students.
[2] Anderson, J., et. al. Intelligent Tutoring Systems. 456-462.
[3] Chmiel, R., and Loui, M. Debugging: From Novice to Expert. Proceedings of the 35th SIGCSE technical symposium on Computer science education (2004), 17-21.
[4] Ducasse, M., and Emde, A.M. A review of automated debugging systems: knowledge, strategies and techniques. Proceedings of the 10th international conference on Software engineering (1998), 162-171.
[5] Dy, T., Robles E. Jr., and Rodrigo, M. Detection of Non-Literal Java Errors in an Introductory Programming Class (2009).
[6] Jadud, M.C. Methods and tools for exploring novice compilation behaviour. ICER’06. Proceedings of the 2nd International Workshop on Computing Education Research (2006), 73-84.
[7] Hughes, M.C., Jadud, M.C. and Rodrigo, M.M.T. Novice programmer strategies for string formatting. Unpublished.
[8] Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L., and Zander, C. Debugging: the good, the bad and the quirky – a qualitative analysis of novices’ strategies. Proceedings of the 39th SIGCSE technical symposium on Computer science education (2008), 163-167.
[9] Rodrigo, M.M.T, Tabanao, E., and Lahoz, M.B.E. Analyzing Online Protocols to Characterize Novice Java Programmers. Philippine Journal of Science (2009). p117-190.

[10] Woolf, B. Building Intelligent Interactive Tutors. 44-45.

PAGE
1

