CS 130 Theory of Computation

1st Semester, 2010
Project 2
Parser for Processing HTML Tables
This is Part II of your two-part project. Using the lexical analyzer you built for Part I of this project, write a parser that converts the HTML table to some a corresponding CSV (comma-separated values) file with some conversions carried out. The input is still a text file containing source code for an HTML table. The output, assuming the source has no lexical or syntax errors, is a CSV file that contains equivalent entries.

The goal of parsing is to process the tokens produced during lexical analysis and check if it follows the prescribed grammar of the source programming language, in this case, HTML for tables.

Given the following html source, for instance:

<!-- a comment -->

<table>

<tr><th> particulars </th> <th> amount </th> </tr>

<tr><td> ballpen </td> <td> 10.25 </td> </tr>

<tr> <td> pencil </td> <td> 5.55 </td> </tr>

<tr> <td> total amount </td> <td> =10.25+2*5.55 </td> </tr>

<tr> <td> formula used :</td> <td> [10.25 + 2*5.55] </td> </tr>

</table>
The parser should produce the following CSV file:
particulars,amount
ballpen,10.25
pencil,5.55
total amount, 21.35

fomula used:, 10.25+2*5.55

Note that if a table entry begins with an equal sign (=), an arithmetic expression follows; in this case, the expression should be evaluated and the result is placed instead of the formula. A table entry may also begin with an opening square bracket ([), in which case, an expression will also follow and will be terminated by a closing square bracket (]); the expression should be a valid expression but will simply be echoed back to the CSV file as is.

For non-expression entries, the tokens should be written verbatim, but separated by exactly 1 space each, except for punctuation symbols. Whenever a punctuation symbol (non-identifier or non-number) occurs, the symbol should be appended to the previous token followed by a space to separate it from the next token. For example, the text stream

Conversion rule:12 eggs ,as a group, make 1dozen;thanks .

if it is a table entry, should be converted to :
Conversion rule: 12 eggs, as a group, make 1 dozen; thanks.

You may write this program in any language you wish. This is an exercise in recursive descent parsing so you should use this method at least when processing the arithmetic expressions. You are not allowed to use tools, packages, or libraries (such as yacc or bison).

Your program should specify the input and output file names through the command line. For example, if you are using Java, the program should be executed like so:

java Parser tab.html result.csv

Extra credit points (5 points out of 100) will be given to those who can handle commas and quotes present in the table entries. You will have to do research on how these cases are handled in CSV files.
Visit the course website for any updates and clarifications. This program is due on Febrary 18 (midnight); submit a zip file of all source code (with a certificate of authorship) via moodle.
