CS 130 Theory of Computation

1st Semester, 2010
Project 1

Lexical Analysis for Processing HTML Tables
This is Part I of a two-part project. Write a lexical analyzer for processing HTML tables. Eventually, you will be asked to convert the HTML table to some other form (e.g., a CSV file with some conversions carried out). The input will be a text file containing source code for an HTML table. The output will be tokens and their corresponding lexemes, and possibly some error messages (there aren’t too many of these, for this phase). Later on, these tokens will be input to a parser (Part II of the project) which completes the translation process.
The goal of lexical analysis is to scan source code, filter out white spaces and comments, identify lexical errors, and most importantly, break up the code (which is a stream of characters) into lexical tokens, the most basic elements of a source program. Given the following html source, for instance:

<!-- a comment -->

<table>

<tr><td> ballpen </td> <td> 10.25 </td> </tr>

<tr> <td> pencil </td> <td> 5.55 </td> </tr>

</table>
The lexical analyzer should produce the following tokens and lexemes (note: the output is incomplete; more should follow—refer to the website for complete output)
TOKEN

LEXEME

TAGIDENT
<table
GTHAN

>
TAGIDENT
<tr
GTHAN

>
TAGIDENT
<td
GTHAN

>
IDENT

ballpen
ENDTAGHEAD
</
IDENT

td
GTHAN

>
TAGIDENT
<td
GTHAN

>
NUMBER
10.25
ENDTAGHEAD
</
IDENT

td
GTHAN

>
ENDTAGHEAD
</
IDENT

tr
GTHAN

>
TAGIDENT
<tr
GTHAN

>
TAGIDENT
<td
GTHAN

>
The program should recognize the following tokens:

PLUS

+
MINUS
-

MULT

*

DIVIDE
/

MODULO
%

EXP

**

LPAREN
(
RPAREN
)

EQUALS
=

LTHAN
<

GTHAN
>

COLON
:

COMMA
,

SCOLON
;

PERIOD
.

QUOTE
’

DQUOTE
”
ENDTAGHEAD </

NUMBER
examples: 0 123 5.5 2.35 0.88888 1e20 2.2E-5

IDENT
[any sequence of letters] examples: table description value th

TAGIDENT
[letter sequence immediately preceded by <] examples: <table <th

EOF

end-of-file token

Your program should have a getToken() function or method which returns the next token from the file. Your driver code will be similar to the following segment:

Token t;

t = program.getToken();

while (t.getId() != EOF)

{

// print t.getId() and t.getLexeme()

// …

t = program.getToken();

}
There are only three lexical errors possible:

· badly formed number—occurs when text like this exist 5.=
· illegal character

· un-expected end of file
You may write this program in any language you wish. This is an exercise in finite automata so the getToken method should simulate this finite automaton. You are not allowed to use lexical analysis tools or libraries (such as lex or flex). Visit the course website for any updates and clarifications. This program is due on January 7 (midnight); submit a zip file of all source code (with a certificate of authorship) via moodle.
