CS 130 Theory of Computation

1st Semester, 2008
Project 2
Recursive Descent Parser for Arithmetic Calculations

This project builds on the lexical analyzer of Project 1. Write a predictive parser for a simple calculator language. Your parser may be table-driven or carried out through recursive procedures as discussed in class. The input will be a source program and the output will be the corresponding result of each command in the program. There are three possible commands: an arithmetic computation, a save command, or a print command. For each arithmetic expression, output either “computation performed” or “error in expression” depending on whether the expression is well-formed or not (due to a lexical or parser error). A save command stores the result of the last expression computed (to be used whenever the identifier RECALL is used in an expression); print the line “result saved”, with the value of the actual result, in this case. A print command prints the result of the last expression computed. A save or print command carried out without a previous computation could result either in an error or an assumed value (such as 0), as the programmer wishes.
Note that up to 10 values may be stored in memory and these are index from 0 to 9 (arguments to SAVE or RECALL).
The goal of parsing is to repeatedly read in tokens (from the scanner), and decide whether the tokens are consistent with the language grammar. Given the following sample input code, for instance:

// this program calculates the roots of a quadratic equation

10**2 + (4*5.5*(-3)) =

SAVE 1. # save the discriminant

(-10 + SQRT(RECALL(1)))/(2*5.5) =

PRINT.

(-10 - SQRT(RECALL(1)))/(2*5.5) =

PRINT.

(10+3))
end of the program

the following output should result:

computation performed

result saved (34.00)

computation performed

-0.38

computation performed

-1.44
error in expression
Visit the course website for any updates and clarifications. This program is due on September 30 (midnight); submit your source code via moodle.
